Cumulative Ability of Juniperus phoenicea Trees for Some Heavy Metals in Shahat forest, Libya

خالد سعد المختار ، يونس حمد سليمان

:Abstract

This study was carried out in Shahat Forest to evaluate the capacity of  J. phoenicea to absorb and store heavy metals in its tissues. Concentration of heavy metals, including (Zn), (Fe), (Cd) and (Pb), were measured in both aerial parts and root parts of the plant, as well as in the soil at a depth of 0-40 cm beneath the trees. Importantly, the concentrations of these heavy metals were found to be within the acceptable limits set by (WHO). The findings indicated that J. phoenicea exhibited notable efficiency in the uptake and accumulation of heavy metals, with (BAF) for Zn, Fe, Cd, and Pb recorded at 12, 6, 2.9, and 2.2, respectively. Additionally, the (BCF) were greater in the aerial parts than in the root parts, and the (TF) was greater than 1 for all heavy metals. As a result, J. phoenicea can be regarded as a promising candidate for bioaccumulation with phytoextraction strategy. Statistical analysis indicated significant differences (p < 0.05) in heavy metal concentrations among the different parts of the plant.

.Keywords: Juniperus phoenicea, Cumulative, Ability, Heavy Metals, Shahat

الملخص

أجريت هذه الدراسة في غابة شحات لتقييم قدرة نبات العرعر الفينيقي على امتصاص وتراكم المعادن الثقيلة داخل أنسجته. تم قياس تركيزات المعادن الثقيلة، (Zn)، (Fe)، (Cd)، (Pb)، في كل من الأنسجة الخضرية والجذرية لنبات العرعر الفينيقي وكذلك في التربة على عمق (0- 40 سم) تحت الأشجار. ومن الجدير بالذكر أن التركيزات المقاسة لهذه المعادن الثقيلة ظلت ضمن الحدود المسموح بها لمنظمة الصحة العالمية. أشارت النتائج إلى أن العرعر الفنيقي أظهر كفاءة ملحوظة في امتصاص وتراكم المعادن الثقيلة، حيث كان معامل التراكم الحيوي Bio Accumulation Factor (BAF) .Zn، وFe، وCd، وPb (12، 6، 2.9، و2.2) على التوالي. أيضا كانت قيمة معامل التركيز الحيوي Bio Concentration Factor (BCF) أعلى في الأجزاء الخضرية مقارنة بالأجزاء الجذرية وكذلك قيمة معامل انتقال العناصر Translocation Factor (TF) كانت أكبر من 1 لكل العناصر. وبناءً على ذلك، يمكن اعتبار ان العرعر الفينيقي مراكماً حيوياً يتبع استراتيجية الاستخلاص الحيوي phytoextraction. أيضا أظهر التحليل الإحصائي وجود اختلافات معنوية (P <0.05) في تركيزات العناصر الثقيلة بين أجزاء النبات المختلفة.

الكلمات المفتاحية : العرعر الفينيقي،  Juniperus phoenice، القدرة التراكمية، التلوث بالمعادن الثقيلة، شحات .

 

References

Abu-Darwish, M. S., & Ofir, R. (2014). Heavy metals content and essential oil yield of Juniperus phoenicea L. in different origins in Jordan. Environmental Engineering & Management Journal (EEMJ), 13(12).

Achak, N., Romane, A., & Dahbi, A. (2009). Metals contents and organic composition in the leaf of three species of Cupressaceaes from the Atlas Mountains, Marrakech (Morocco). Physical & chemical news, (47), 98-102.

Ahmad, M., Usman, A. R., Al-Faraj, A. S., Ahmad, M., Sallam, A., & Al-Wabel, M. I. (2018). Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere, 194, 327-339.

Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869-881.

Angelova, V. (2022). Heavy metal accumulation and chemical composition of essential oil of Juniperus oxycedrus L.(Cupressaceae) grown on serpentine soils in Bulgaria. Scientific Papers. Series E. Land Reclamation, Earth Observation & Surveying, Environmental Engineering, 11.

Anum, S., Khan, S. M., Chaudhary, H. J., Ahmad, Z., & Afza, R. (2019). Phytoremediation of nickel polluted ecosystem through selected ornamental plant species in the presence of bacterium Kocuria rhizophila. Bioremediation Journal, 23(3), 215-226.‏

Asbabou, A., Hanane, T., Gourich, A. A., Siddique, F., Drioiche, A., Remok, F., … & Zair, T. (2024). Phytochemical profile, physicochemical, antioxidant and antimicrobial properties of Juniperus phoenicea and Tetraclinis articulate: in vitro and in silico approaches. Frontiers in Chemistry, 12, 1397961.

Bahiru, D. B., & Yegrem, L. (2021). Levels of heavy metal in vegetable, fruits and cereals crops in Ethiopia: A review. International Journal of Environmental Monitoring and Analysis, 9(4), 96.

Ben Mahmoud, K. R. (1995). Libyan soils (Their Genesis, Classification, Properties and Agricultural potentials) NASR. Tripoli, Libya, 615.

Binxhija, L., & Ylli, A.(2021). Study Of Heavy Metals In Wild Juniperus Plants From Kosovo. Appl Veg Sci, 20: 397–409.

Cardoso-Silva, C. B., Melo, J., Pereira, A., & Cerqueira-Silva, C. B. (2013). Aoac. 1997. Official Methods Of Analysis Of The Association Of Official Analytical. Caracterização, Propagação E Melhoramento Genético De Pitaya Comercial E Nativa Do Cerrado, 29(1), 48.

Cesur, A., Zeren Cetin, I., Abo Aisha, A. E. S., Alrabiti, O. B. M., Aljama, A. M. O., Jawed, A. A., … & Ozel, H. B. (2021). The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in air. Environmental Science and Pollution Research, 28(27), 35642-35648.‏

Chandrajith, R., Dissanayake, C. B., & Tobschall, H. J. (2005). The abundances of rarer trace elements in paddy (rice) soils of Sri Lanka. Chemosphere, 58(10), 1415-1420.

Chitimus, D., Nedeff, V., Mosnegutu, E., Barsan, N., Irimia, O., & Nedeff, F. (2023). Studies on the accumulation, translocation, and enrichment capacity of soils and the plant species phragmites australis (common reed) with heavy metals. Sustainability, 15(11), 8729.

Cunningham,S.D., and Ow, D.W.(1996):Promises and prospects of phytoremediation. – Plant Physiol. 110; 715-719.

Dalvi, A. A., & Bhalerao, S. A. (2013). Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci, 2(9), 362-368.

Diaconu, D., Nastase, V., Nănău, M. M., Nechifor, O., & Nechifor, E. (2009). Assessment of some heavy metals in soils, drinking water, medicinal plants and their liquid extracts. Environmental Engineering & Management Journal (EEMJ), 8(3).

Farahat, E., & Linderholm, H. W. (2015). The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Science of the Total Environment, 512, 1-7.

Gerhardt, K. E., Gerwing, P. D., & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256, 170-185.

Ghosh, M., & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18.

Gleba D.,Borisjuk,N.V.,Borisjuk, L. G.,Kneer,R., Poulev, A.,Skarzhinskaya,M., Dushenkov, S. Logendra, S. Gleba, Y. Y., Raskin, I. (1999): Use of Plant root for phytoremediation and molecular farming. – Proc. Natl.Acad.Sci, USA. 96; 5973-5977.

Gola, D., Malik, A., Shaikh, Z. A., & Sreekrishnan, T. R. (2016). Impact of heavy metal containing wastewater on agricultural soil and produce: relevance of biological treatment. Environmental Processes, 3, 1063-1080.

Hall, J. Á. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of experimental botany, 53(366), 1-11.

Hao, X., Taghavi, S., Xie, P., Orbach, M. J., Alwathnani, H. A., Rensing, C., & Wei, G. (2014). Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis. International Journal of Phytoremediation, 16(2), 179-202.

He, Y., Su, S., Cheng, J., Tang, Z., Ren, S., & Lyu, Y. (2021). Bioaccumulation and trophodynamics of cyclic methylsiloxanes in the food web of a large subtropical lake in China. Journal of Hazardous Materials, 413, 125354.

Hu, Y., Wang, D., Wei, L., Zhang, X., & Song, B. (2014). Bioaccumulation of heavy metals in plant leaves from Yan׳ an city of the Loess Plateau, China. Ecotoxicology and environmental safety, 110, 82-88.

Huang, J., Wang, C., Qi, L., Zhang, X., Tang, G., Li, L., … & Lu, M. (2020). Phosphorus is more effective than nitrogen in restoring plant communities of heavy metals polluted soils. Environmental Pollution, 266, 115259.

Hussain, B., Abbas, Y., Ali, H., Zafar, M., Ali, S., Ashraf, M. N., … & Valderrama, J. R. D. (2022). Metal and metalloids speciation, fractionation, bioavailability, and transfer toward plants. In Metals metalloids soil plant water systems (pp. 29-50). Academic Press.

Iatrou, M., Papadopoulos, A., Papadopoulos, F., Dichala, O., Psoma, P., & Bountla, A. (2014). Determination of soil available phosphorus using the Olsen and Mehlich 3 methods for Greek soils having variable amounts of calcium carbonate. Communications in Soil Science and Plant Analysis, 45(16), 2207-2214.

Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of environmental management, 217, 56-70.

Khan, S. N., Nafees, M., & Imtiaz, M. (2023). Assessment of industrial effluents for heavy metals concentration and evaluation of grass (Phalaris minor) as a pollution indicator. Heliyon, 9(9).

Khermandar, K., Mahdavi, A., & Ahmady Asbchin, S. (2016). Differential expression of Lead accumulation during two growing seasons by desert shrub Acacia victoriae L. Desert, 21(2), 143-154.

Kord, B., Khademi, A., Madanipour Kermanshahi, M., Pourabbasi, S., & Hashemi, S. A. (2024). Phytoremediation potential of tree species in soil contaminated with lead and cadmium. Caspian Journal of Environmental Sciences, 1-9.

Kraj, W., Pietrzykowski, M., & Warczyk, A. (2021). The antioxidant defense system and bioremediation. In Handbook of Bioremediation (pp. 205-220). Academic Press.

Manohara, B., & Belagali, S. L. (2014). Characterization of essential nutrients and heavy metals during municipal solid waste composting. International Journal of Innovative Research in Science, Engineering and Technology, 3(2), 9664-9672.

Marques, A. P., Rangel, A. O., & Castro, P. M. (2009). Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622-654.

McIntyre, T., 2003. Phytoremediation of heavy metals from soils. Advances in Biochemical Engineering/ Biotechnology 78, 97-123.

Mellem, J. J., Baijnath, H., & Odhav, B. (2012). Bioaccumulation of Cr, Hg, As, Pb, Cu and Ni with the ability for hyperaccumulation by Amaranthus dubius. African Journal of Agricultural Research, 7(4), 591-596.

Mishra, T., & Pandey, V. C. (2019). Phytoremediation of red mud deposits through natural succession. In Phytomanagement of polluted sites (pp. 409-424).

Nogueira, T. A. R., Franco, A., He, Z., Braga, V. S., Firme, L. P., & Abreu-Junior, C. H. (2013). Short-term usage of sewage sludge as organic fertilizer to sugarcane in a tropical soil bears little threat of heavy metal contamination. Journal of Environmental Management, 114, 168-177.

Nouha, k., Mounira, g. M., Lamia, h., Shahhat, i., Mehrez, r., & Arbi, g. (2024). Physiological and biochemical responses in mediterranean saltbush (atriplex halimus l., amaranthaceae juss.) To heavy metal pollution in arid environment. Pak. J. Bot, 56(5), 1717-1726.

Othman, A., & Al-Habbat, N. (2023). Modeling Trends in Rainfall Rates at Shahat Meteorological Station (1961-2050) Using Statistical Techniques. Journal of Humanitarian and Applied Sciences, 8(16), 176-188.

Ott, R. L. and Longnecker M. T. (2015) An introduction to statistical methods and data analysis: Nelson Education. 1296.

Oumlouki, K. E., Salih, G., Jilal, A., Dakak, H., Amrani, M. E., & Zouahri, A. (2021). Comparative study of the mineral composition of carob pulp (Ceratonia siliqua L.) from various regions in Morocco. Moroccan Journal of Chemistry, 9(4), 9-4.

Pandey, R., Shubhashish, K., & Pandey, J. (2012). Dietary intake of pollutant aerosols via vegetables influenced by atmospheric deposition and wastewater irrigation. Ecotoxicology and environmental safety, 76, 200-208.

Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?. Plant science, 180(2), 169-181.

Raskin, I, Kumar, P.B.A.N., Dushenkov, S. and Salt, D. (1994): Bioconcentration of heavy metals by plants. – Current Opinion Biotechnology 5; 285-290.

Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., … & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721.

Siyar, R., Doulati Ardejani, F., Norouzi, P., Maghsoudy, S., Yavarzadeh, M., Taherdangkoo, R., & Butscher, C. (2022). Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water, 14(22), 3597.

Smith, S. R., & Giller, K. E. (1992). Effective Rhizobium leguminosarum biovar trifolii present in five soils contaminated with heavy metals from long-term applications of sewage sludge or metal mine spoil. Soil Biology and Biochemistry, 24(8), 781-788.

Sopyan, S., Sikanna, R., & Sumarni, N. K. (2014). Fitoakumulasi Merkuri Oleh Akar Tanaman Bayam Duri (Amarantus Spinosus Linn) Pada Tanah Tercemar. Natural Science: Journal of Science and Technology, 3(1).

Suman, J., Uhlik, O., Viktorova, J., & Macek, T. (2018). Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment?. Frontiers in plant science, 9, 1476.

Taghipour, H., & Mosaferi, M. (2013). Heavy metals in the vegetables collected from production sites. Health promotion perspectives, 3(2), 185.

Takarina, N. D., & Pin, T. G. (2017). Bioconcentration factor (BCF) and translocation factor (TF) of heavy metals in mangrove trees of Blanakan fish farm. Makara Journal of Science, 77-81.

Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International journal of chemical engineering, 2011(1), 939161.

Usman, A.R.A., R.S., Alkredaa and  M.I. Al-Wabel (2013) Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia sp. marina as potential metal bioaccumulator.Ecotoxicol. Environ. Saf. 97: 263-270.

Van der Ent, A., Baker, A. J., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and soil, 362, 319-334.

Venegas-Rioseco, J., Ginocchio, R., & Ortiz-Calderón, C. (2021). Increase in phytoextraction potential by genome editing and transformation: a review. Plants, 11(1), 86.

World Health Organization (WHO). (1996). Permissible limits of heavy metals in soil and plants. Geneva, Switzerland.

Wu, Q., Wang, S., Thangavel, P., Li, Q., Zheng, H., Bai, J., & Qiu, R. (2011). Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings. International Journal of phytoremediation, 13(8), 788-804.

Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011(1), 402647.

Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in plant science, 11, 359.

Youning, Hu., W. Dexiang, W. Lijing, Z. Xinping and S. Bin (2014). Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotoxicology and Environmental Safety, 110: 82–88.

Yu, H., Xiao, H., Cui, Y., Liu, Y., & Tan, W. (2022). High nitrogen addition after the application of sewage sludge compost decreased the bioavailability of heavy metals in soil. Environmental Research, 215, 114351.

Zhang, M., Cui, L., Sheng, L., & Wang, Y. (2009). Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological engineering35(4), 563-569.

Zhao, Q., Thompson, A. M., Callister, S. J., Tfaily, M. M., Bell, S. L., Hobbie, S. E., & Hofmockel, K. S. (2022). Dynamics of organic matter molecular composition under aerobic decomposition and their response to the nitrogen addition in grassland soils. Science of the Total Environment, 806, 150514.

Zhao, X., Liu, J., Xia, X., Chu, J., Wei, Y., Shi, S., … & Jiang, Z. (2014). The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environmental Science and Pollution Research, 21, 5076-5085

 

  Download